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Abstract

This paper presents development of multi-input multi-output (MIMO) Generalized Pre-
dictive Control (GPC) law and its application to reconfigurable control design in the event of
actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA)
model is used to describe the plant dynamics. The control law is derived using input-output
description of the system and is also related to the state-space form of the model. The sta-
bility of the GPC control law without reconfiguration is first established using Riccati-based
approach and state-space formulation. A novel reconfiguration strategy is developed for the
systems which have actuator redundancy and are faced with actuator saturation type fail-
ure. An elegant reconfigurable control design is presented with stability proof. Several
numerical examples are presented to demonstrate the application of various results.

1 Introduction

Over last decade, GPC has emerged as one of the leading control design strategies for robust
control of dynamical systems. In early years (prior to late eighties) GPC’s applicability was
essentially limited only to process control applications due to its demand on computational
speeds. However, with the advances made in the computer technology over last decade
computational speed is not a major concern for many real-life applications and control
engineers have started using GPC for many main-stream applications. In recent years,
GPC has become a viable alternative or in some cases even a preferred choice over well-
known H∞, H2, and µ-synthesis approaches. GPC has proved to be very effective when
requirements on the robustness and performance are hard to achieve with traditional control
designs.

GPC belongs to a class of Model Predictive Control (MPC) methods. History of MPC
dates back to late 70’s when the process industry showed keen interest in using these control
methods. The control formulation at the time was mainly heuristic and algorithmic [1, 2],
and exploited the increasing potential of digital processors. These controllers were closely
related to the minimum time optimal control methodology. The receding-horizon principle
which is central to most of the MPC algorithms came about as early as 60’s [3]. As men-
tioned earlier, MPCs became quite popular in the process industries where computational
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speed was not a major concern. Also, many MPC algorithms were used on multivariable
systems with constraints but no formal proofs of stability or robustness were available.
Another parallel development took place using ideas from adaptive control which led to
the development of self-tuning controllers [4] and extended horizon adaptive controllers
(EHAC)[5]. This continued evolution of MPCs led to the emergence of the Generalized
Predictive Control (GPC) methodology in late 80’s [16] which incorporates all major fea-
tures of the predictive controllers in a unified framework. Various versions of the same
common idea gave rise to the following different types of predictive controllers: Multi-step
Multivariable Adaptive Control (MUSMAR)[6], Multipredictor Receding Horizon Adaptive
Control (MURHAC) [7], Predictive Functional Control (PFC) [8], and Unified Predictive
Control (UPC)[9].

MPC has also been formulated in the state-space setting [10], which not only allows
the use of well established state-space theories for analysis but also provides the ease for
extensions to multivariable systems. Moreover, it facilitates the use of stochastic theories
and treatment of actuator/sensor noise. The well developed estimation theory from state
space methods can be easily incorporated without much complication. The perspective
gained by working in these different domains made it possible to devise some simple tuning
rules for ensuring stability and robustness for MPC systems. As a simple analogy, MPC
controller can be viewed as an observer-based controller wherein its stability, performance,
and robustness is determined by the observer dynamics, which can be fixed by adjustable
parameters, and regulator dynamics, determined by MPC parameters such as weightings,
horizon lengths, etc. In MPC, the control action at the current time instant is obtained by
solving a finite horizon open-loop optimal control problem at each sampling instant. That
is, the optimization problem yielding a control input is solved on-line at each time instant.
The optimization process at each time instant yields an optimal control sequence and only
the first control input in this sequence is applied to the plant. The novelty of MPC lies in
its structure and not the control law itself. It essentially solves a standard nonlinear (or
linear) optimal control problem. The fact that MPC solves the problem on-line and that it
has the ability to naturally and explicitly handle the input and output constraints makes
it a popular and powerful control paradigm.

One major criticism of MPC methodology is that, except for some special cases, there
is no general purpose theory which guarantees closed-loop stability of MPC. Although, in
[11], some specific stability theorems are given for GPC using the state-space setting the
general case stability results for GPC were lacking. Recently, in 90’s, stability of GPC under
end-point constraints was shown in [12, 13] where the equality constraints were imposed
on the output after at the end of a finite horizon. A variation of this end-point constraint
idea is used in this paper for establishing stability of Multi-Input Multi-Output (MIMO)
reconfigurable control architecture using GPC. The stability proof uses Linear Quadratic
Regulator (LQR) results and monotonicity properties of Riccati solutions. This paper also
presents a clean and detailed formulation of GPC prediction equations and derivation for
end-point constraint-based GPC control law for MIMO linear time-invariant (LTI) systems.
A stable reconfiguration capability of the proposed GPC architecture is demonstrated using
a simulation example.
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Figure 1: MPC Strategy

2 GPC Control Paradigm

GPC is the most generalized form of MPC. Among all different types of MPC schemes, GPC
has maximum design freedom available for choosing design parameters. MPC design has
several algorithms leading to different control schemes but all design schemes essentially use
the same design paradigm. There are three basic elements of MPC: the prediction model,
the cost function, and the control law. Every MPC uses some kind of plant model to predict
future plant outputs over a pre-defined prediction horizon, Ny = N2 − N1, where, N1 and
N2 represent lower and upper prediction horizons, respectively. The predicted outputs,
y(t + k|t) (k = N1, . . . , N2) depend on the past inputs and outputs and on the future
control signals u(t + k|t), k = 1, 2, . . . , Nu, where Nu represents a control horizon. A
set of future control signals is calculated by optimizing a suitable performance index so
as to keep the plant output as close to the reference trajectory w(t + k) as possible. The
performance index is typically a quadratic function of the predicted tracking error and
control increments. The optimization is performed at each time step and the first element
of the optimized control sequence is sent to the plant. The whole process is repeated again
at the next time step after “receding” the prediction horizon by one time-step. Because of
this receding horizon feature of this control scheme it is sometimes referred to as Receding
Horizon Control as well. The MPC control strategy is illustrated in Figure 1. Figure shows
the predicted output based on plant model and predicted optimal control sequence based
on predicted future error. In the figure, the control horizon Nu is shown to be same as
the prediction horizon Ny, which is not necessary. In case of GPC, all design parameters,
N1, N2, Nu, and λ ( control penalty in cost function) can be changed unlike other MPC
schemes where one or more of these parameters are fixed. From this point on in the paper
our focus will be on GPC control strategy unless otherwise mentioned. The control system
block diagram for GPC is shown in Figure 2.

3 GPC Control of SISO Systems

Consider a discrete-time model of the single-input single-output (SISO) system described
using a backward shift operator (q−1) as,

A(q−1)y(k) = q−dB(q−1)u(k − 1) + C(q−1)
ξ(k)

∆
(1)
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Figure 2: MPC block diagram

where u(k) and y(k) are the control and output sequences of the plant and ξ(k) is an
uncorrelated random sequence. A, B, and C are the polynomials in the backward shift
operator q−1:

A(q−1) = 1 + a1q
−1 + a2q

−2 + · · · + anaq
−na

B(q−1) = b0 + b1q
−1 + b2q

−2 + · · · + bnbq
−nb

C(q−1) = 1 + c1q
−1 + c2q

−2 + · · · + cncq
−nc

where d is the dead time of the system. ∆ is the difference operator 1 − q−1. This model
is known as a Controlled Auto-Regressive Integrating Moving Average (CARIMA) model.
For simplicity in the development, without loss of generality, C(q−1) is chosen to be 1. The
plant (1) is then given by:

A(q−1)y(k) = q−dB(q−1)u(k − 1) +
ξ(k)

∆
(2)

The basic cost function used in GPC has the form

J(N1, N2, Nu, λ) =
N2∑

j=N1

[ŷ(k + j) − w(k + j)]2 +
Nu∑

j=1

λ(j)[∆u(k + j − 1)]2 (3)

where, ŷ(k + j) is an optimum j-step ahead prediction of the system output up to time
k, w(k + j), j = 1, 2, . . . is a future set-point or reference sequence. N1 is the minimum
prediction horizon, N2 is the maximum prediction horizon, Nu is the control horizon and
λ(k) is a control-weighting sequence. As seen in Eq. (3), the cost function is quadratic
and penalizes future tracking errors over prediction horizon and control energy over control
horizon. It is assumed that the control increments after control horizon are zero. The basic
idea is to compute the optimal future control sequence, u∗(k) = [u(k), u(k + 1), . . .], such
that the cost function J(N1, N2, Nu, λ) is minimized. The control designer has to select
the tuning parameters, N1, N2, Nu, and λ, to meet certain stability and performance
objectives. Once u∗(k) is computed, only the first element of the sequence is used and the
whole process is repeated at next time step.

3.1 Prediction of future outputs

In order to compute the cost function, which consists of future tracking errors, we need
to compute the future outputs, ŷ(k + j) (N1 ≤ j ≤ N2), using the best available plant
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model (2). In case of SISO systems, these predictions can be easily computed using the
Diophantine equation [9]. The development of prediction equations for SISO case using
Diophantine approach is detailed in the Appendix 3.1. The prediction equations obtained
in section 3.1 using Diophantine approach are very cumbersome to use and are not easily
extendable to MIMO case. This motivates the development of state-space based formulation
of prediction equations and control law.

3.2 State-space formulation of prediction equations

Consider a state-space description of the plant (Eq. 1) given as:

x(k + 1) = Ax(k) + B∆u(k) + Bξξ(k) (4)

y(k) = Cx(k) + ξ(k)

The reason for using the state-space form of the system with ∆u(k) as input is that the
algebraic complexity in the derivation of GPC control law reduces significantly in this form.
The transformation of system equations with u(k) input to this form is given in detail in
the appendix. In Eq. (4), the dimension of state vector is n = max(na + 1, nb + d + 1, nc),
and matrices A, B, Bξ, and C are given by

A =




−ã1 1 0 · · · 0
−ã2 0 1 · · · 0

...
...

...
. . .

...
−ãd+1 0 0 · · · 0

...
...

...
...

...
−ãn 0 0 · · · 0

...
...

...
...

...
−ãna+1 0 0 · · · 0




B =




0
0
...
b0
...

bn−d−1
...

bnb−d−1




Bξ =




c1 − ã1

c2 − ã2
...

cd+1 − ãd+1
...

cn − ãn

...
cnc − ãnc




C =
[

1 0 · · · 0 · · · 0 · · ·
]

where ãi are the coefficients of polynomial Ã, which is given by

Ã(q−1) = ∆A(q−1) = 1 + ã1q
−1 + · · · + ãnq−n + · · · + ãna+1q

−(na+1) (5)

Note that, in matrix B, the d leading elements are zeros. The block diagram representation
of CARIMA model is shown in Fig. 3. If d = 0, the CARIMA model representation
becomes that of Fig. 4. If in addition to d = 0, C(q−1) = 1, the CARIMA model takes the
form of Fig. 5, For both cases of Figs. 4 and 5, we can get the corresponding state-space
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Figure 3: The CARIMA model
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Figure 4: The CARIMA model with d = 0

model.
As mentioned previously, since the noise and disturbances in future are not known apriori

for prediction of future outputs only deterministic part of the plant model is considered
in the following development. The deterministic part of plant dynamics in polynomial
description is given by

A(q−1)∆y(k) = B(q−1)∆u(k − 1) (6)

Let the corresponding state-space model be

x(k + 1) = Ax(k) + B∆u(k) (7)

y(k) = Cx(k)

Using the z-transform, we can obtain the z-domain transfer function H(z) as follows:

H(z) = C(zI − A)−1B

=
C(I − A

z
)−1B

z
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Figure 5: The CARIMA model with d = 0 and C(q−1) = 1

=
C

z

(
I +

A

z
+

A2

z2
+

A3

z3
+ · · ·

)
B

=
CB

z
+

CAB

z2
+

CA2B

z3
+ · · ·

By taking the inverse z-transform of the above equation, we get:

y(k) = CB∆u(k − 1) + CAB∆u(k − 2) + CA2B∆u(k − 3) + · · ·

The future outputs are then given by

y(k + 1) = CB∆u(k) + CAB∆u(k − 1) + CA2B∆u(k − 2) + · · ·

y(k + 2) = CB∆u(k + 1) + CAB∆u(k) + CA2B∆u(k − 1) + · · ·

...

y(k + N1) = CB∆u(k + N1 − 1) + CAB∆u(k + N1 − 2) + CA2B∆u(k + N1 − 3) + · · ·

...

y(k + N2) = CB∆u(k + N2 − 1) + CAB∆u(k + N2 − 2) + CA2B∆u(k + N2 − 3) + · · ·

A general term y(k + j) (j = 1, 2, · · · , N2) in the above equation can be written as

y(k + j) =
∞∑

i=1

CAi−1B∆u(k + j − i)

=
j∑

i=1

CAi−1B∆u(k + j − i) +
∞∑

i=j+1

CAi−1B∆u(k + j − i)

=
j∑

i=1

CAi−1B∆u(k + j − i) +
∞∑

m=0

CAm+jB∆u(k − m − 1)

=
j∑

i=1

CAi−1B∆u(k + j − i) +
∞∑

m=0

CAm+j (x(k − m) − Ax(k − m − 1))
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=
j∑

i=1

CAi−1B∆u(k + j − i) +
∞∑

m=0

CAj
(
Amx(k − m) − Am+1x(k − m − 1)

)

=
j∑

i=1

CAi−1B∆u(k + j − i) + CAjx(k)

Now using assumption of GPC control strategy that ∆u(k+i) = 0 for i ≥ Nu, and denoting

Ŷ =




y(k + 1)
y(k + 2)

...
y(k + N1)

...
y(k + N2)




and ∆u =




∆u(k)
∆u(k + 1)

...
∆u(k + Nu − 1)




we can write the predicted output as

Ŷ = G∆u + F

where

F =




CA
CA2

...

CAN1

...

CAN2




x(k)

and G is given by

G =




CB 0 0 · · · 0
CAB CB 0 · · · 0

...
...

...
...

...

CAN1−1B CAN1−2B CAN1−3B · · · 0
...

...
...

...
...

CAN2−1B CAN2−2B CAN2−3B · · · CAN2−NuB




(8)

Note that Eq. (8) allows easy computation of G compared to Diophantine-based technique.
For SISO systems, it is interesting to note that the polynomials Ej and Fj in Diophantine
equation solution have coefficients that relate to the A matrix of the state-space form of
Eq. (4). To be specific, the elements in the first row of Aj are the last Nu coefficients of
Ej+1 in the decreasing order of the degree of q−1 and the first column has the coefficients
of Fj in the increasing order of the degree of q−1.

3.3 Development of GPC for MIMO Systems

In this section, we will develop GPC control law for the general case of MIMO LTI systems.
For algebraic simplicity we will use state-space description for plant dynamics. Let the

8



state-space model for a general MIMO system with p inputs and q outputs is given by

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) (9)

where, x is the n-dimensional state vector, A, B and C are system matrices with dimensions
n × n, n × p, and q × n, respectively.

The cost function to be minimized is given by

J(N1, N2, Nu, λ) =
N2∑

j=N1

(y(k + j) − w(k + j))T (y(k + j) − w(k + j)) +

Nu∑

j=1

λ(∆u(k + j − 1))T (∆u(k + j − 1)) (10)

where, y is the q-vector of predicted output, w is the q-vector of reference trajectory, and
∆u is the p-vector of input increments. In order to compute the optimal control input
minimizing above performance function output predictions need to be computed over the
prediction horizon. The following section develops prediction equations for MIMO case.

3.4 Output prediction for MIMO Systems

The procedure developed for predicting output in SISO case can be extended to MIMO
systems as well with some added algebraic complexity. Consider a MIMO system of Eq.
(9). We can compute the future outputs y(k + j) ( j = 1, 2, · · · , N1, · · · , N2) based on the
plant information available up to time k using a recursion procedure. The predictions of
state for future times starting at time k are given by

x(k + 1) = Ax(k) + B∆u(k)

x(k + 2) = Ax(k + 1) + B∆u(k + 1) = A2x(k) + AB∆u(k) + B∆u(k + 1)

x(k + 3) = Ax(k + 2) + B∆u(k + 2) = A3x(k) + A2B∆u(k) + AB∆u(k + 1)

+B∆u(k + 2)

...

x(k + j) = Ajx(k) +
j−1∑

i=0

Aj−i−1B∆u(k + i)

The output at time k + j, y(k + j), is then given by

y(k + j) = CAjx(k) +
j−1∑

i=0

CAj−i−1B∆u(k + i) (11)

Rewriting y(k + j) in the matrix form, we get

y(k + j) =
[

CAj−1B CAj−2B · · · CAB CB
]




∆u(k)
∆u(k + 1)

...
∆u(k + j − 2)
∆u(k + j − 1)




+ CAjx(k)

(12)
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Let us define

y =




y(k + N1)
...

y(k + N2)


 =




y1(k + N1)
y2(k + N1)

...
yq(k + N1)

...
y1(k + N2)
y2(k + N2)

...
yq(k + N2)




(N2−N1+1)q×1

(13)

and

∆u =




∆u(k)
∆u(k + 1)

...
∆u(k + Nu − 1)




=




∆u1(k)
∆u2(k)

...
∆up(k)

∆u1(k + 1)
∆u2(k + 1)

...
∆up(k + 1)

...
∆u1(k + Nu − 1)
∆u2(k + Nu − 1)

...
∆up(k + Nu − 1)




Nup×1

(14)

Then predicted outputs are given in a compact form as

y =




CAN1−1B CAN1−2B CAN1−3B · · · 0
...

...
...

. . .
...

CAN2−1B CAN2−2B CAN2−3B · · · CAN2−NuB




︸ ︷︷ ︸
G

∆u +




CAN1

...

CAN2


x(k)

︸ ︷︷ ︸
f

y = G∆u + f (15)

Note that the form of G in MIMO case is same as that of SISO case (Eq. (8)) except the
prediction horizon is from N1 to N2. The cost function of Eq. (10) can be rewritten in a
compact form as

J(N1, N2, Nu, λ) = (y − w)T (y − w) + λ∆uT ∆u

= (G∆u + f − w)T (G∆u + f − w) + λ∆uT ∆u (16)
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where, y, ∆u, G, and f are given by Eqs. (13)-(15), and w is given by

w =




w(k + N1)
w(k + N1 + 1)

...
w(k + N2)




=




w1(k + N1)
w2(k + N1)

...
wq(k + N1)

...
w1(k + N2)
w2(k + N2)

...
wq(k + N2)




(17)

Rewriting the cost function as,

J =
1

2
∆uTH∆u + b∆u + f0 (18)

where

H = 2[GTG + λI]

b = 2[(f − w)TG]

f0 = (f − w)T (f − w)

and setting

∂J

∂∆u
= 0

we obtain the optimal control input ∆u∗ as follows:

∆u∗ = −H−1bT = −(GTG + λI)−1[GT (f − w)] (19)

The actual control signal sent to the process is the first p elements of the vector ∆u∗.

4 Stability of GPC control law

One of the major drawbacks of GPC control law presented in Eq. (19) is that the closed-
loop stability under this control law can not be guaranteed. However, this difficulty can
be overcome if the performance function in Eq. (10) used to obtain the control law can be
modified to include the penalty on the end-state of the system and GPC design parameters
can be chosen in a certain way.

The approach that is taken here to prove the stability of the GPC control law is to use
the stability properties of the corresponding LQR problem. So, the optimal control problem
can now be stated as follows:

For the LTI system

x(k + 1) = Ax(k) + B∆u(k) (20)

y(k) = Cx(k)

11



determine the optimal control law that minimizes the cost with the end-point state weight-
ing

J(N1, N2, Nu, Q, λ) = (x(k + N2) − wx(k + N2))
TQ(x(k + N2) − wx(k + N2))

+
N2∑

j=N1

[y(k + j) − w(k + j)]T [y(k + j) − w(k + j)]

+
Nu∑

j=1

λ(j)[∆u(k + j − 1)]T [∆u(k + j − 1)] (21)

where, wx(k + N2) is the desired value of the state at the end of the prediction horizon,
N1 = 1, N2 = Nu = N , Q ≥ 0 and λ(j) = λ > 0.

Since the stability properties of the system are independent of the reference input, we
can ignore the reference input (or equivalently assume to be zero), i.e., set wx(k +N2) = 0,
and w(k + j) = 0, ∀j. Then, the cost function will be modified to

JN = xT (k + N)Qx(k + N)

+
N∑

j=1

{
y(k + j)Ty(k + j) + λ∆u(k + j − 1)Tu(k + j − 1)

}

= xT (k + N)(Q + CTC)x(k + N)

+
N−1∑

j=0

{
x(k + j)TCTCx(k + j) + λ∆u(k + j)T ∆u(k + j)

}

−xT (k)CTCx(k) (22)

4.1 GPC control law with end-point weighting

The GPC control law derived in Section 3.3 is no more optimal for the cost function in
Eq. (22) since this cost function now includes additional penalty on the end-state of the
prediction horizon which was absent in the cost of Eq. (16). The GPC control law for this
modified cost is derived next.

The state evolution equation for the plant in Eq. (20) is given by

x(k + N) = ANx(k) +
N−1∑

i=0

AN−i−1B∆u(k + i)

= ANx(k) +
[

AN−1B AN−2B · · · B
]

︸ ︷︷ ︸
C




∆u(k)
∆u(k + 1)

...
∆u(k + N − 1)




︸ ︷︷ ︸
∆u

= ANx(k) + C∆u (23)

Using Eqs. (23) and (15) the cost function in Eq. (22) can be re-written in more compact
form as

JN =
1

2
∆uT

[
H + 2C

T
QC

]
∆u +

[
b + 2xT (k)(AN )TQC

]
∆u + f0 + xT (k)(AN )TQANx(k)(24)

12



where,

H = 2
[
GTG + λI

]

b = 2fTG

f0 = fT f

Matrices G and f are as defined in Eq. (15) and f is given as

f =




CA1

CA2

...

CAN




︸ ︷︷ ︸
L

x(k) = Lx(k)

Let the cost function in Eq. (24) be further simplified to

JN =
1

2
∆uTH∆u + b∆u + f0 (25)

where

H = 2
[
GTG + λI + C

T
QC

]

b = 2xT (k)
[
LTG + (AN )TQC

]

f0 = xT (k)
(
LT L + (AN )TQAN

)
x(k)

Now the optimal control ∆u∗ can be obtained by setting the gradient of Eq. (25) to zero
with respect to ∆u. That is,

∂J

∂∆u
= 0 ⇒

∆u∗ = −H
−1

b
T

= −
(
GTG + λI + C

T
QC

)−1 (
GT L + C

T
QAN

)
x(k)

= −Kx(k) (26)

The following lemmas give the stability result for the corresponding LQR problem which
will be used in proving the stability of GPC control law and the connection between GPC
and LQR control laws.

Lemma 1 For the system (20) the optimal control law minimizing the LQ performance
index (22) is given by

∆u∗(k) = −K(k)x(k) (27)

where, gain K(k) is given by

K(k + j) = [BT P̂ (k + j + 1)B + λI]−1BT P̂ (k + j + 1)A (28)

and P̂ is the solution of the following Riccati Difference Equation (RDE)

P̂ (k+j) = AT P̂ (k+j+1)A−AT P̂ (k+j+1)B[BT P̂ (k+j+1)B+λI]−1BT P̂ (k+j+1)A+CTC

(29)
with the boundary condition

P̂ (k + N) = Q + CTC (30)

13



Proof 1 Proof is given in the appendix.

Lemma 2 For the system shown in Eq. (20) and the performance function given in Eq.
(22), the GPC control law given by Eq. (26) is same as the LQR control law (Eq. C.26)
evaluated at the same time instant

Proof 2 Proof is given in the appendix.

4.2 Stability result

The RDE in Eq. (C.28) can be re-written by reversing the time index by defining

Pm := P̂ (k + N − m), where m = 0, 1, 2, · · · , N − 1

Then, the RDE in the forward form becomes

Pm+1 = AT PmA − AT PmB(BT PmB + λI)−1BT PmA + CTC (31)

with initial condition P0 = Q + CTC.
Now, if we consider the steady-state solution for the infinite horizon problem, i.e., let

N → ∞ and let Pm = Pm+1 = P =constant as m → ∞, then, Eq. (31) becomes the
Algebraic Riccati Equation (ARE) in variable P :

P = AT PA − AT PB(BT PB + λI)−1BT PA + CTC (32)

The following lemma is state without proof which gives the conditions under which the
matrix P has the stabilizing property.

Lemma 3 If the system (A, B, C) is stabilizable and detectable, and P0 � 0, then the
matrix sequence, {Pm}∞m=0, generated by the RDE (Eq. (31)) has a unique limit P which
stabilizes the system and satisfies the Algebraic Riccati Equation (ARE) (Eq. (32)).

Theorem 1 If the system given by Eq. (20) is stabilizable and detectable, P0 � P1, Q � 0,
λ > 0, N1 = 1, and N2 = Nu = N , then the GPC control law of Eq. (26) stabilizes the
system.

Proof 3 In order to show stability of GPC control law, it suffices to show that the feedback
gain K used in Eq. (26) is stabilizing. From Lemma 2, this is equivalent to showing that
the corresponding LQR gain in Eq. (C.26) is stabilizing. Note that as long as the GPC
parameters (N1, N2, Nu, and λ) are fixed the GPC control is equivalent to a constant-gain
state feedback.

Rewrite the RDE (Eq. (31)) as a set of two equations:

Pm = AT PmA−AT PmB(BT PmB + λI)−1BT PmA + Q(m)

Q(m) : = CTC + (Pm − Pm+1) (33)

where, first of Eq. (33) is nothing but an ARE for a given m. They are also referred to
as Fake Algebraic Riccati Equations (FARE) in the literature. Now, by Lemma 3 if the
system is stabilizable and detectable and Pm −Pm+1 � 0 , Pm will stabilize the system, i.e.,
A = A−B(BT PmB+λI)−1BT PmA will have all of its eigenvalues strictly within the unit
circle. Next, we will use the monotonicity properties of the RDE and the property of FARE
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to show the stability of GPC.
Consider matrix P̃k defined as follows

P̃k = Pk−1 − Pk

Then, from the result (Fact 5.2.1) on Page 95 of [22], P̃k satisfies the RDE

P̃k+1 = Ã
T

k P̃kÃk − Ã
T

k P̃kB(BT P̃kB + λ̃k)
−1BT P̃kÃk

where

Ãk = A−B(BT PkB + λI)−1BT PkA

Q̃(k) = CTC−CTC = 0

λ̃k = BT PkB + λI � 0

Now, if

P̃1 = P0 − P1 � 0

by the property of the solution of the RDE,

P̃N = PN−1 − PN � 0.

Then, from first of Eq. (33), PN−1 stabilizes the system. Since, PN−1 = P̂ (k + 1), the
LQR controller gain K(k) in Eq. (C.26) stabilizes the system. Now, from Lemma 2, GPC
controller gain K in (Eq. (26)) stabilizes the system

4.3 GPC control law for non-zero reference trajectory

In the case when the desired trajectory is non-zero time varying the GPC control law (Eq.
(26)) takes slightly different form to account for the tracking error. Consider the LTI system

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k)

and the cost function

J(N1, N2, Nu, λ) = (x(k + N2) − wx(k + N2))
TQ(x(k + N2) − wx(k + N2))

+
N2∑

j=N1

[y(k + j) − w(k + j)]T [y(k + j) − w(k + j)]

+
Nu∑

j=1

λ(j)[∆u(k + j − 1)]T [∆u(k + j − 1)] (34)

where wx(k + N2)) is the desired value of x at t = k + N2.
Now, using the equations given in Section 15 the above cost function can be re-written as

J = (C∆u + AN2x(k) − wx(k + N2)))
TQ(C∆u + AN2x(k) − wx(k + N2)))

+(y − w)T (y − w) + λ∆uT ∆u
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Substituting y by from Eq. (13), we can rewrite the cost function as

J =
1

2
∆uTH∆u + b∆u + f0

where

H = 2(GTG + λI + CQC)

b = 2
[
(AN2x(k) − wx(k + N2))

TQC + (f − w)TG
]

(35)

f0 = (AN2x(k) − wx(k + N2))
TQ(AN2x(k) − wx(k + N2)) + (f − w)T (f − w)

The optimal control law is then given by

∆u∗ = −H−1bT . (36)

where H and b are given by Eq. (35).

4.4 Computation of desired state trajectories

In most real life situations it is safe to assume that the desired output trajectory is given
to the control designer. However, the control law computation (Eq. 36) requires that the
desired state trajectories are known. This section gives the procedure for computing the
desired state trajectories given the desired output trajectories for a general case.

Consider MIMO LTI system given by the following state-space description

x(k + 1) = Ax(k) + B∆u(k). (37)

Let w(k + N2) denote the desired output trajectory that needs to be tracked by the sys-
tem and let wx(k + N2) denote the corresponding trajectories for the desired state. Then,
wx(k + N2) must satisfy the following conditions:

w(k + N2) = Cwx(k + N2) (38)

(A − I)wx(k + N2) = 0 (39)

The first condition (Eq. 38) is a direct consequence of output equation. The second condi-
tion (Eq. 39) is derived next.

One consideration in tracking problem is that the choice of wx(k + N2) should be con-
sistent with the zero steady-state output tracking error. Consider the GPC control law
with tracking error feedback:

∆u∗(k) = −Ke(k) (40)

where

e(k) = x(k) − wx(k)

The closed-loop error dynamics for the system given by Eq. (37) with control law (40) is
given by

e(k + 1) = x(k + 1) − wx(k + 1)

= Ax(k) + B∆u∗(k) − wx(k + 1)

= (A − BK)e(k) + Awx(k) − wx(k + 1).
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At steady-state, for zero tracking error we need

e(k + 1) = e(k) = 0, and wx(k) = wx(k + 1).

Then, to satisfy the end-point constraint of zero tracking error, we need

(A − I)wx(k + N2) = 0.

Combining the conditions of Eqs. (38) and (39), we get

[
A − I

C

]
wx(k + N2) =

[
0

w(k + N2)

]
(41)

Note that Eq. (41) typically represents under-determined system of equations as matrix on
the left hand side is not generally invertible. In such as case, a least square solution can be
obtained for the desired state trajectories as

wx(k + N2) =

([
A − I

C

])† [
0

w(k + N2)

]
(42)

where (·)† denotes pseudo-inverse of (·).

4.4.1 Special Case: System with redundant actuators

For the system which has more inputs than outputs, i.e. p > q, the transformation of the
system with u(k) as input to the form which has ∆u(k) as input, the detectability may be
lost. To see this, consider the matrix

[
λI − A

C

]
(43)

where A and C are defined as in Eq. (B.16). When λ = 1, rank of (λI − A) is less than
n− p. The rank of C can at the most be q. So, the matrix in Eq. (43) must have rank less
than n, which is not a full column rank. That is, the detectability is lost. However, this
problem can be addressed as follows:

Consider a system with ∆u(k) as input and let the number of inputs be greater than
the number of outputs, i.e., p > q.

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) (44)

Now consider a modified output ỹ(k) such that

ỹ(k) = C̃x(k) (45)

where

ỹ(k) =

[
y(k)

u(k − 1)

]
, C̃ =

[
C

0p×(n−p) Ip×p

]
(46)
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It can be verified that with respect to this new output the system is detectable. Thus, the
modified system now takes the form:

x(k + 1) = Ax(k) + B∆u(k) (47)

ỹ(k) = C̃x(k) (48)

which is stabilizable and detectable. For this new system, let the cost function be modified
as follows:

J̃ = xT (k + N)Qx(k + N) +
N∑

j=1

yT (k + j)Q̃y(k + j) +
N∑

j=1

λ∆u(k + j − 1) (49)

where

Q̃ =

[
Iq×q

0p×p

]
(50)

Now, it can be seen that minimizing the cost function given by Eq. (49) for the system
given by Eq. (47) is same as minimizing the original cost function (Eq. 22) for original
system (Eq. 44). The advantage in dealing with transformed system is that it satisfies the
conditions of stability theorem and therefore allows computation of GPC control law.

Now, to show that the stability proof still holds consider the following:
We have already shown that the modified cost function is essentially same as the original

cost function. Now it remains to show that the Riccati equations used in Lemma 1 with
appropriate boundary condition do not change as a result of transformed system. The
equations in Lemma 1 for the modified system can be rewritten as:

∆u∗(k) = −K(k)x(k)

where

K(k + j) = [BT P̂ (k + j + 1)B + λI]−1BT P̂ (k + j + 1)A

P̂ (k + j) = AT P̂ (k + j + 1)[A − BK(k + j)] + C̃
T
Q̃C̃

with

P̂ (k + N) = Q + C̃
T
Q̃C̃.

By direct substitution, it can be easily verified that

C̃
T
Q̃C̃ = CTC.

This essentially proves that the GPC control law derived for the transformed system stabi-
lizes the original system.
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5 Reconfigurable control

In this section, we will extend the stability result obtained in previous section to the case of
reconfigurable control architecture. We present a reconfigurable control scheme wherein the
system has some redundancy in control actuators and in the event of actuator failures, like
saturation for example, the system can reconfigure itself to re-allocate the control signal to
other set of actuators.

Consider a strictly proper stabilizable and detectable MIMO LTI system from Eq. (9)
with p inputs and q outputs.

x(k + 1) = Ax(k) + B∆u(k) (51)

y(k) = Cx(k)

Let us suppose that the system has some redundancy in actuators, i. e., p ≥ q and some of
the p inputs can control more than one outputs. The reconfiguration problem is defined as
follows. If one or more of the p actuators saturate (i.e., become “inactive”) how to re-allocate
the control signal to actuators which are still “active” such that the lost degrees of freedom
due to saturation in controlling certain outputs are regained via re-allocation. Moreover,
to ensure that the overall stability of the system is maintained under such reconfiguration.
Before reconfiguration scheme is presented and stability of such scheme is established some
definitions are in order.

5.1 Definitions

Definition 1 Reconfiguration matrix: Any q × p matrix with binary entries (0 or 1) is
called as Reconfiguration Matrix, Qrc, and is used to set the control priorities for each
actuator.

Qrc is used to select which actuator is used to control a certain output. The size of the Qrc

matrix is q (number of outputs) by p (number of inputs). Each element of Qrc is either 1
or 0 indicating weather a particular actuator is allowed to control a specific output or not.
For example, let us take a 5-input 2-output system. An example Qrc matrix could be

Qrc =

[
0 1 0 0 0
0 0 1 1 0

]
(52)

In this example of Qrc, the first output can be controlled only by the second input, and the
second output can be controlled by both the third and fourth inputs.

This matrix is then used to “reconfigure” the H matrix (where H is the transfer function
matrix of system in Eq. (51)) as follows which causes the reconfiguration. Reconfigured H
matrix is denoted by Hrc and is given by

Hrc = Qrc ⊗ H (53)

where, ⊗ indicates the outer product. This outer product effectively modifies the B and
the c matrix of the system to account for reconfiguration.

Definition 2 Let Q be the set of all allowable Qrcs such that the outer product in Eq. (53)
produces a set of reconfigured stabilizable and detectable systems.
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That is,

Q =
{
Qi

rc | (A, B̃i, C̃i) is stabilizable and detectable ∀i
}

(54)

where, B̃i is the reconfigured B matrix and C̃i is the reconfigured C matrix as a result of
outer product of Qi

rc with G.

Definition 3 The matrix designed to prioritize the order of the actuators in which they
are used in the event of saturation failure is called as Reconfiguration Order Matrix.

The design of the reconfiguration matrix Qrc is based on the criteria designed suitably based
on the application, for example one of the criteria could be the saturation of the actuators.
The order in which the redundant actuators are used is based on the reconfiguration order
matrix, Qro. For example, for the Qrc defined in Eq. (52) a reconfiguration order matrix
could be

Qro =

[
4 1 2 2 3
4 3 1 1 2

]
(55)

This Qro matrix informs the reconfiguration algorithm to use the second input to control
the first output until it saturates followed by actuators 3 and 4 until they saturate followed
by actuators 5 and then 1. Similar logic is used for the second output. Each time the
control law is evaluated, the first actuators are used to calculate the control input. The
input is tested for saturation, if it is saturated, the Qrc matrix is set to the next actuator
(or set of actuators). This process is repeated until there is no change in the Qrc matrix or
there are no more free actuators left. Then, the resulting control is sent to the plant. This
process is repeated at each cycle. The repeating of this process ensures that the reverse
order of actuators is used as the actuators unsaturate.

5.2 Stability under reconfigurable control

The stability of the reconfigurable control architecture described above will be established
in two steps. In the first step, it will be shown that the set of plants obtained after
reconfiguration is stabilized by the GPC control law of Eq. (26). Then, in the second
step, it will be shown that the system remains stable during the switching of the control
law under reconfiguration. The stability of the reconfigured system is established by the
following theorem.

Theorem 2 All systems resulting from reconfiguration of system given by Eq. (51) due to
reconfiguration matrix Qrc are stabilized by the control law of Eq. (26) iff Qrc belongs to
the set Q.

Proof 4 Proof of this theorem is the direct consequence of Definition 2 and Theorem 1.

Note that the control law of Eq. (26) stabilizes the original system (Eq. (51)) as well
according to Theorem 1. Having established that both systems - system before reconfigu-
ration and the system after reconfiguration - are stabilized by the control law of Eq. (26),
to complete the stability argument we need to show that the stability is retained during the
process of reconfiguration. For that, let the system after reconfiguration is described by

x̂(k + 1) = Âx̂(k) + B̂∆u(k) (56)

y(k) = Ĉx̂(k)
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Let us suppose that the system (51) is under closed-loop control with control law given
by Eq. (26). Suppose the system has actuator saturation at time instant k = r and is
reconfigured by matrix Qrc ∈ Q to yield the system of Eq. (56). That means, the dynamics
of the system (51) starting at say initial time k = 0 is governed by the dynamics of system
(56) after reconfiguration (i.e., for ∀ k ≥ r). Since the GPC control of Eq. (26) is stabilizing
for system (51), x(r) is bounded. Let x̂(r) be the initial condition for the system (56) at
time instant k = r. Since x̂(r) is related to x(r) by some similarity transformation, x̂(r)
is also bounded. Now, for time k > r, system evolves according the dynamics of Eq. (56).
From Theorem 2, the system (56) is also stabilized by the control law of Eq. (26), i.e., x̂(k)
remains bounded for all r < k ≤ ∞. Thus we have shown that the system remains stable
for all 0 ≤ k ≤ ∞ under control law of Eq. (26)

6 Numerical Example

In this section, a numerical example is given to demonstrate stable reconfiguration capability
of the GPC control methodology presented in Section 5 using a short-period approximation
model of an aircraft. Two different cases of reconfiguration are presented where each case
can be considered to represent a different type of actuator limitation and/or failure.

The short-period approximation model of an aircraft considered is:

ẋ(t) =

[
0 −1.3677

1.0000 −1.5087

]
x(t) +

[
−0.0665 −0.0029 −0.0029
−0.0862 −0.0043 −0.0043

]
u(t)

y(t) =
[

0 0.2500
]
x(t)

where the inputs are elevator deflection, left aileron deflection, and right aileron deflection.
The eigenvalues of the open-loop system are −0.7543 ± 0.8937i. The maneuver under
consideration is the step change in the pitch-rate. The initial actuator configuration is such
that only the desirable input is the elevator input to accomplish this task. The left and
right ailerons are considered as redundant actuators and are to be used if elevator fails.
For demonstrating reconfiguration capability two different cases are considered: Case (i)
system reaches the steady-state condition and elevator fails to hold its position and elevator
input suddenly drops to zero; and Case (ii) before system reaches to target output elevator
freezes in its position and some constant input is acting on the system but not adequate to
reach the desired position. These two cases are chosen as they represent two quite different
dynamic characteristics. In the first case the redundant actuators (both ailerons) have to
compensate for no elevator input and try to return system to desired steady-state condition
whereas in the second case the ailerons have to make-up for the inadequate control input
to reach to the desired steady-state. Given below are reconfiguration results based on the
methodology presented in Section 5.
Reconfiguration strategy and GPC control law design: For both cases, the steps
involved in the control law design are same and are given below. The reconfiguration matrix
Qrc has its initial settings as:

Qrc =
[

1 0 0
]
,
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The outer product of Qrc with the system transfer matrix yields the following system

ẋ(t) =

[
0 −1.3677

1.0000 −1.5087

]
x(t) +

[
0.2500
0.2758

]
u(t)

y(t) =
[
−0.0128 −0.0665

]
x(t) (57)

The discretization of the system of Eq. (57) with sampling time, T = 0.05s, we get

x(k + 1) =

[
0.9983 −0.0658
0.0481 0.9257

]
x(k) +

[
0.0120
0.0136

]
u(k)

y(k) =
[
−0.0128 −0.0665

]
x(k) (58)

Now, using the transformation given in the Appendix B we can transform the system to a
new system which has ∆u(k) as input as follows:

x(k + 1) =




0.9983 −0.0658 0.0120
0.0481 0.9257 0.0136

0 0 1.0000


x(k) +




0.0120
0.0136
1.0000


∆u(k)

y(k) =
[
−0.0128 −0.0665 0

]
x(k) (59)

It can be verify that the system in Eq. (59) is stabilizable but not detectable. In order
to satisfy the conditions of the stability theorem given in Section 4, we define a fictitious
output and augment the output matrix to be

Caug =

[
−0.0128 −0.0665 0

0 0 1

]
(60)

With this newly defined C matrix, the system is stabilizable and detectable. Now, choosing
the GPC design parameters as: N1 = 1, N2 = Nu = 5, λ = 0.1, and end-point weighting
matrix Q = diag{150 800 1} we can obtain a stabilizing control law. The Riccati solutions
P0 and P1 for these set of design parameters are given below.

P0 = Q + CTC

=




150.0002 0.0009 0
0.0009 800.0044 0

0 0 1.0000




P1 =




147.0957 7.5878 0.1832
7.5878 608.4186 0.7829
0.1832 0.7829 0.0921




These Riccati solutions satisfy the conditions of Theorem 1 as the eigenvalues of the differ-
ence P0 − P1 are

Eig(P0 − P1) =
[

191.8935 2.6266 0.8780
]
≥ 0 ⇒ P0 − P1 � 0.

When the system is reconfigured (in cases (i) or (ii)), the reconfiguration matrix Qrc is
given by:

Qrc =
[

0 1 1
]
. (61)

22



Then, from Eq. (53) the system transfer matrix after reconfiguration effectively becomes

ẋ(t) =

[
0.0000 −1.3677
1.0000 −1.5087

]
x(t) +

[
−0.0234 −0.0234
−0.0345 −0.0345

]
u(t)

y(t) =
[
−0.0000 0.0313

]
x(t) (62)

Again, discretization of the system with sampling time, T = 0.05s, yields

x(k + 1) =

[
0.9983 −0.0658
0.0481 0.9257

]
x(k) +

[
−0.0011 −0.0011
−0.0017 −0.0017

]
u(k)

y(k) =
[
−0.0000 0.0313

]
x(k) (63)

Again, as before, using the transformation given in the Appendix B one can transform the
above system to a new system with ∆u(k) as input as follows:

x(k + 1) =




0.9983 −0.0658 −0.0011 −0.0011
0.0481 0.9257 −0.0017 −0.0017

0 0 1.0000 0
0 0 0 1.0000


x(k) +




−0.0011 −0.0011
−0.0017 −0.0017
1.0000 0

0 1.0000


∆u(k)

y(k) =
[
−0.0000 0.0313 0 0

]
x(k) (64)

This system again is not detectable and one can define new fictitious output as before and
define a new C matrix as

Caug =




−0.0000 0.0313 0 0
0 0 1.0000 0
0 0 0 1.0000


 (65)

The modified system with this new C matrix is again controllable and observable. Now if
we define the new GPC parameters to be N1 = 1, N2 = Nu = 5, λ = 0.1, and the end-point
weighting matrix as Q = diag{130 200 1 1}, we obtain the following Riccati solutions
which satisfy the stability condition of Theorem 1 as shown below:

P0 = Q + CTC

=




130.0000 −0.0000 0 0
−0.0000 200.0010 0 0

0 0 1.0000 0
0 0 0 1.0000




P1 =




129.9835 0.2793 −0.0146 −0.0146
0.2793 171.7884 −0.0275 −0.0275
−0.0146 −0.0275 0.0909 0.0000
−0.0146 −0.0275 0.0000 0.0909




Eig(P0 − P1) =
[

28.2154 0.0133 0.9095 0.9091
]
≥ 0 ⇒ P0 − P1 � 0.

Thus the conditions in the Theorem 1 are satisfied and the GPC control law (Eq. (26))
stabilizes the system.
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Case (i): Consider the first of the two cases mentioned above. In this case, it is assumed
that after system output (pitch rate) reaches its steady-state value of 1.15 deg/sec the
elevator input abruptly goes to zero (at t = 2 secs) (potentially this could be a result of
possible failure) and system is reconfigured using Eq. (6).

Figure 7 shows the system response before and after reconfiguration. It can be seen
that the system reaches a zero steady-state error within 2 seconds and when elevator input
abruptly goes to zero at t = 2 secs, the output starts drifting from the desired value. At
t = 2 sec reconfiguration takes place and ailerons take over and bring back the output back
to the desired value rendering zero steady-state error. The input time histories are given in
Fig. 6. As shown in the figure, the elevator deflection has abruptly dropped to zero after
reaching an approximate steady-state value of −1.8 deg and at the same instant ailerons
take over and bring the output back to the desired value. The ailerons reach the steady
deflection of about −19 deg. The cost and tracking error plots are given in Figs. 8 and 9,
respectively.
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Figure 6: The GPC control law
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Figure 7: The Plant Output
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Figure 8: The Cost Function
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Figure 9: The Plant Output Error

Case (ii): In the second case, it is assumed that the elevator input freezes to some
nonzero constant −6 deg before the system output (pitch rate) reaches its desired value
(5.73 deg/sec). The simulation results for this case are shown in Figures 10-13. As shown
in Fig. 10, the elevator input freezes approximately at −6 deg when the system output has
reached only 90% of its final value. At this time ailerons take over as a result of reconfig-
uration and ailerons deflection reaches a steady-state value of approximately −21 deg as
pitch rate reaches to desired value of 5.73 deg/sec. As seen in Fig. 11, overall tracking
performance is very satisfactory without steady-state error. The performance function and
tracking error time history is shown in Figs. 12 and 13, respectively.

7 Concluding Remarks

This paper presented a comprehensive development of the basic GPC control architecture
and derivation of control law for SISO as well as MIMO systems. For SISO systems, both
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Figure 10: The GPC control law
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Figure 11: The Plant Output

z-domain (i.e., polynomial-based) as well as state-space based control law development
was given. Stability of GPC based on end-point constraints was presented as a basis for
establishing stability of a novel reconfigurable GPC control architecture. The stability
conditions for reconfiguration scheme were presented. A numerical example consisting
of longitudinal control of aircraft was presented to demonstrate the effectiveness of the
proposed reconfiguration methodology.
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Appendix

A Diophantine equation

The Diophantine equation offers a convenient way to obtain a division of two polynomials
and has the following form:

1 = Ej(q
−1)Ã(q−1) + q−jFj(q

−1) (A.1)

where Ã(q−1) = ∆A(q−1). The degrees of polynomials Ej and Fj are j − 1 and na,
respectively. This equation will be useful in writing predictions of future outputs. The
Diophantine equation has a unique solution, Ej and Fj , given A(q−1) and the prediction
interval j.

Consider Eq. (2) and multiply it by Ej∆qj to obtain

Ej∆A(q−1)y(k + j) = EjB(q−1)∆u(k + j − d − 1) + Ejξ(k + j) (A.2)

Now substituting for EjA∆ from Eq. (A.1) gives

y(k + j) = Fj(q
−1)y(k) + Ej(q

−1)B(q−1)∆u(k + j − d − 1) + Ej(q
−1)ξ(k + j) (A.3)

As the degree of polynomial Ej(q
−1) = j − 1 the noise terms in Eq. (A.3) are all in the

future and therefore can be omitted from the prediction as any better prediction of noise
is not possible. The best prediction of y(k + j) is therefore given by

ŷ(k + j) = Gj(q
−1)∆u(k + j − d − 1) + Fj(q

−1)y(k) (A.4)

where, Gj(q
−1) = Ej(q

−1)B(q−1). Since the degrees of Ej and Fj are j − 1 and na, the jth

prediction of output involves the past outputs: (y(k), y(k − 1), · · · , y(k − na)) and inputs
(∆u(k + j − d − 1), ∆u(k + j − d − 2), · · · , ∆u(k − d − nb)). The polynomials Ej and Fj

obtained from Eq. (A.1) are given by

Ej(q
−1) = ej,0 + ej,1q

−1 + · · · + ej,j−1q
−(j−1)

Fj(q
−1) = fj,0 + fj,1q

−1 + · · · + fj,naq
−na

Now, the same Diophantine equation can be used to obtain Ej+1 and Fj+1, where

Fj+1(q
−1) = fj+1,0 + fj+1,1q

−1 + · · · + fj+1,naq
−na

and the polynomial Ej+1 is be given by

Ej+1(q
−1) = Ej(q

−1) + ej+1,jq
−j

with ej+1,j = fj,0. The polynomial Gj+1 can now be obtained recursively as follows

Gj+1 = Ej+1B = (Ej + fj,0q
−j)B

= Gj + fj,0q
−jB (A.5)
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where

Gj(q
−1) = gj,0 + gj,1q

−1 + gj,2q
−2 + · · · (A.6)

From Eqs. (A.5) and (A.6), it can be seen that the first j coefficients of Gj+1 will be
identical to those of Gj and the remaining ones are given by

gj+1,j+i = gj,j+i + fj,0bi i = 0, · · · , nb

In the case when system has a dead time of d, the output of the system at any time instant
k is the result of input applied to the system at time k − d. As a result, the horizons N1

and N2 should be chosen such that N2 ≥ N1 ≥ d + 1.
Now consider the following set of j-step ahead optimal predictions for j = d+1, · · · , N2:

ŷ(k + d + 1) = Gd+1∆u(k) + Fd+1y(k)

ŷ(k + d + 2) = Gd+2∆u(k + 1) + Fd+2y(k)

...

ŷ(k + N1) = GN1
∆u(k + N1 − d − 1) + FN1

y(k)

...

ŷ(k + N2) = GN2
∆u(k + N2 − d − 1) + FN2

y(k)

which can be re-written as:

Ŷ = G∆u + F(q−1)y(k) + G ′(q−1)∆u(k − 1) (A.7)

where

Ŷ =




ŷ(k + d + 1)
ŷ(k + d + 2)

...
ŷ(k + N1)

...
ŷ(k + N2)




∆u =




∆u(k)
∆u(k + 1)

...
∆u(k + Nu − 1)




G =




g0 0 0 · · · 0
g1 g0 0 · · · 0
...

...
...

...
...

gN1−d−1 gN1−d−2 gN1−d−3 · · · 0
...

...
...

...
...

gN2−d−1 gN2−d−2 gN2−d−3 · · · gN2−Nu−d




G′(q−1) =




(Gd+1(q
−1) − g0)q

(Gd+2(q
−1) − g0 − g1q

−1)q2

...

(GN1−d−1(q
−1) − g0 − g1q

−1 − · · · − gN1−d−1q
−(N1−d−1))qN1−d

...

(GN2−d−1(q
−1) − g0 − g1q

−1 − · · · − gN2−d−1q
−(N2−d−1))qN2−d
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and

F(q−1) =




Fd+1(q
−1)

Fd+2(q
−1)

...
Fd+N1

(q−1)
...

Fd+N2
(q−1)




Thus, the predicted outputs over the prediction horizon are given by

y =




ŷ(k + N1)
ŷ(k + N1 + 1)

...
ŷ(k + N2)




= G∆u + f (A.8)

where,

G =




gN1−d−1 gN1−d−2 · · · 0
gN1−d gN1−d−1 · · · 0

...
...

. . .
...

gN2−d−1 gN2−d−2 · · · gN2−Nu−d




and

f =




Fd+N1
(q−1)

...
Fd+N2

(q−1)


 y(k)

+




(GN1−d−1(q
−1) − g0 − g1q

−1 − · · · − gN1−d−1q
−(N1−d−1))qN1−d

...

(GN2−d−1(q
−1) − g0 − g1q

−1 − · · · − gN2−d−1q
−(N2−d−1))qN2−d


∆u(k − 1)

A.1 Control law

Using Eq. (A.8), the cost function (Eq.(3)) can be written as

J(N1, N2, Nu, λ) = (G∆u + f − w)T (G∆u + f − w) + λ∆uT ∆u (A.9)

where

w =




w(t + d + N1)
w(t + d + N1 + 1)

...
w(t + d + N2)




Equation (A.9) can be re-written as

J(N1, N2, Nu, λ) =
1

2
∆uTH∆u + b∆u + f0 (A.10)
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where

H = 2(GTG + λI)

b = 2(f − w)TG

f0 = (f − w)T (f − w)

Minimizing cost function (3) to obtain optimal control is an unconstrained optimization
problem as no other constraints are considered on control input or plant output. The
optimal input ∆u∗ is obtained by setting the gradient of J with respect to ∆u equal to
zero. That is,

∆u∗ = −H−1bT = (GTG + λI)−1GT (w − f) (A.11)

The actual control signal sent to the plant is

∆u∗(k) = I1∆u∗ (A.12)

where, I1 = [1, 0, 0, . . . , 0] is the 1 × Nu row vector. From Eq. (A.12) it can be seen that
∆u∗(k) is the first element of vector ∆u∗.
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B System transformation

Typically, most of the system equations are available in the form with the input being u

and not ∆u. However, the GPC control law developed in Eq. (26) is based on the system
having input ∆u. This section is intended to provide the equations to transform the system
with input u to a system with input ∆u.

Consider a MIMO LTI system with p inputs and q outputs.

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) + D̂u(k) (B.13)

where input to the system is u and output is y. Let H(z) denote the transfer function from
u(k) to y(k). Then,

Y(z) = H(z)U(z)

where H(z) has a realization

H =

[
Â B̂

Ĉ D̂

]
(B.14)

Now let T(z) be the transfer function from new input ∆u(k) to u(k), i. e.,

U(z) = T(z)∆U(z)

where, T(z) is p × p transfer matrix and has the form:

T(z) =




1
1−z−1

. . .
1

1−z−1




p×p

Suppose T(z) has a realization

T =

[
A∆ B∆

C∆ D∆

]
=

[
Ip×p Ip×p

Ip×p Ip×p

]
(B.15)

and the state

x∆(k) = u(k − 1).

Now, let H∆(z) denotes the system with input ∆u(k), output y(k), and having following
state-space description.

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k) + D∆u(k)

Then,

Y(z) = H(z)T(z)∆U(z)

= H∆(z)∆U(k)
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where H∆(z) has realization

H∆ =

[
A B

C D

]
=




Â B̂C∆

0 A∆

B̂D∆

B∆

Ĉ D̂C∆ D̂D∆


 (B.16)

and the new state is

x(k) =

[
x̂(k)
x∆(k)

]
=

[
x̂(k)

u(k − 1)

]
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C Proof of Lemma 1

We will use the principle of optimality to derive the optimal control law. The principle of
optimality is well known and is stated below The Principle of Optimality: An optimal
policy has the property that whatever the initial state and the initial decision are, the re-
maining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.

In the context of our problem, the principle may be stated as follows:

If a closed-loop control u∗(k) = f(x(k)) is optimal over the interval 0 ≤ k ≤ N , it is
also optimal over any subinterval m ≤ k ≤ N , where 0 ≤ m ≤ N .

Let us define a set of various costs Fj as follows

FN = xT (k + N)(Q + CTC)x(k + N)

Fj = xT (k + j)CTCx(k + j) + λ∆uT (k + j)∆u(k + j) (j = 0, 1, · · · , N − 1)

Then, we an re-write the cost function, Eq. (22), as follows

JN = F0 + F1 + · · · + FN−1 + FN − xT (k)CTCx(k)

Note that x(k) does not affect the optimal control law ∆u∗(j), for j ≥ k.

Let Sm (m = 1, 2, · · · , N + 1) be the cost from j = k + N − m + 1 to j = k + N . Then
Sm can be written as

Sm = JN − JN−m = FN−m+1 + · · · + FN

From the Principle of Optimality if JN is the optimal cost, then so is Sm. By the definition
of Sm, we know that

Sm+1 = Sm + FN−m

= Sm + xT (k + N − m)CTCx(k + N − m) +

λ∆uT (k + N − m)∆u(k + N − m) (C.17)

If S∗
m is the optimal cost then we can get the optimal control ∆u∗(k +N −m) by replacing

Sm by S∗
m in Eq. (C.17) and then setting

∂Sm+1

∂∆u(k + N − m)
= 0 (C.18)

We will obtain the expression for the optimal control by the method of induction. Consider
S1. By the assumptions of GPC, ∆u(k + j) = 0 for j ≥ N . So

S∗
1 = xT (k + N)(Q + CTC)x(k + N)

= xT (k + N)P̂ (k + N)x(k + N) (C.19)

where P̂ is defined as

P̂ (k + N) = Q + CTC
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From Eq. (C.17), we get

S2 = S∗
1 + FN−1

= S∗
1 + xT (k + N − 1)CTCx(k + N − 1) + λ∆uT (k + N − 1)∆u(k + N − 1)

Substituting for S∗
1 and using state-space equation x(k + 1) = Ax(k) + B∆u(k), we get

S2 = [Ax(k + N − 1) + B∆u(k + N − 1)]T P̂ (k + N)[Ax(k + N − 1) + B∆u(k + N − 1)]

+xT (k + N − 1)CTCx(k + N − 1) + λ∆uT (k + N − 1)∆u(k + N − 1)

Now setting

∂S2

∂∆u(k + N − 1)
= 0

we get optimal control law

∆u∗(k + N − 1) = −K(k + N − 1)x(k + N − 1) (C.20)

where

K(k + N − 1) = [BT (Q + CTC)B + λI]−1BT (Q + CTC)A

and

S∗
2 = xT (k + N − 1) ×

[(A − BK(k + N − 1))T (Q + CTC)(A − BK(k + N − 1)) +

CTC + λKT (k + N − 1)K(k + N − 1)] ×

x(k + N − 1)

:= xT (k + N − 1)P̂ (k + N − 1)x(k + N − 1) (C.21)

P̂ (k + N − 1) is thus given by

P̂ (k + N − 1) = [(A − BK(k + N − 1))T (Q + CTC)(A − BK(k + N − 1)) +

CTC + λKT (k + N − 1)K(k + N − 1)] (C.22)

From Eqs. (C.19) and (C.21), by induction we can write

S∗
m = xT (k + N − m + 1)P̂ (k + N − m + 1)x(k + N − m + 1)

and

Sm+1 = S∗
m + xT (k + N − m)CTCx(k + N − m) + λ∆uT (k + N − m)∆u(k + N − m)

= [Ax(k + N − m) + B∆u(k + N − m)]T P̂ (k + N − m + 1) ×

[Ax(k + N − m) + B∆u(k + N − m)]

+xT (k + N − m)CTCx(k + N − m) + λ∆uT (k + N − m)∆u(k + N − m)

Now, Eq. (C.18) can be used to find the optimal control law as follows

∂Sm+1

∂∆u(k + N − m)
= 0 ⇒ ∆u∗(k + N − m) = −K(k + N − m)x(k + N − m) (C.23)
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where

K(k + N − m) = [BT P̂ (k + N − m + 1)B + λI]−1BT P̂ (k + N − m + 1)A (C.24)

Substituting for ∆u yields

S∗
m+1 = xT (k + N − m) ×

[(A − BK(k + N − m))T P̂ (k + N − m + 1)(A − BK(k + N − m)) +

CTC + λKT (k + N − m)K(k + N − m)] ×

x(k + N − m)

:= xT (k + N − m)P̂ (k + N − m)x(k + N − m)

where, P̂ (k + N − m) is given by

P̂ (k + N − m) = AT P̂ (k + N − m + 1)(A − BK(k + N − m)) + CTC (C.25)

and the optimal cost is given by

S∗
N+1 = xT (k)P̂ (k)x(k)

J∗
N = S∗

N+1 − xT (k)CTCx(k)

= xT (k)(P̂ (k) − CTC)x(k)

From Eqs. (C.20), (C.24) and (C.25), the optimal control law ∆u∗(k) is given by

∆u∗(k) = −K(k)x(k) (C.26)

where, K(k) is obtained from the following recursive equation

K(k + j) = [BT P̂ (k + j + 1)B + λI]−1BT P̂ (k + j + 1)A (C.27)

and P̂ (k) is the solution of the Riccati Difference Equation (RDE)

P̂ (k+j) = AT P̂ (k+j+1)A−AT P̂ (k+j+1)B[BT P̂ (k+j+1)B+λI]−1BT P̂ (k+j+1)A+CTC
(C.28)

with the boundary condition
P̂ (k + N) = Q + CTC (C.29)
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D Proof of Lemma 2

In this section, we will show that the control law in Eq. (C.26) is same as the one in Eq.
(26). We will show by manipulating these equations that their right hand side (RHS) and
left hand side (LHS) are same.

Pre-multiplying both sides of Eq. (26) by
(
GTG + λI + C

T
QC

)
we get

(
GTG + λI + C

T
QC

)
∆u∗ = −

(
GT L + C

T
QAN

)
x(k)

Now, substituting G, C, and L, in above equation yields



BTCTCB + · · · + BT (AN−1)T (Q + CTC)(AN−1)TB · · · BT (AN−1)T (Q + CTC)B
...

. . .
...

BT (Q + CTC)AN−1B · · · BT (Q + CTC)B


∆u∗

+λI∆u∗ = −




BTCTCA + BTATCTCA2 + · · · + BT (AN−1)T (Q + CTC)AN

BTCTCA2 + · · · + BT (AN−1)T (Q + CTC)AN

...

BT (Q + CTC)AN




x(k)(D.30)

The ith equation is given by
[
BTCTCAi−1B + BTATCTCAiB + · · · + BT (AN−i)T (Q + CTC)AN−1B

]
∆u∗(k)

+
[
BTCTCAi−2B + BTATCTCAi−1B + · · · + BT (AN−i)T (Q + CTC)AN−2B

]
∆u∗(k + 1)

+ · · · · · ·

+
[
BTCTCB + BTATCTCAB + · · · + BT (AN−i)T (Q + CTC)AN−iB

]
∆u∗(k + i − 1)

+
[
BTATCTCB + BT (A2)TCTCAB + · · · + BT (AN−i)T (Q + CTC)AN−i−1B

]
∆u∗(k + i)

+ · · · · · ·

+
[
BT (AN−i)T (Q + CTC)B

]
∆u∗(k + N − 1)

= −
[
BTCTCAi + BTATCTCAi+1 + · · · + BT (AN−i)T (Q + CTC)AN

]
x(k) (D.31)

Now from Eq. (C.26), we can write

∆u∗(k + i) = −K(k + i)x(k + i)

= −
[
BT P̂ (k + i + 1)B + λI

]−1
BT P̂ (k + i + 1)Ax(k + i)

Pre-multiplying above equation by
[
BT P̂ (k + i + 1)B + λI

]
gives

[
BT P̂ (k + i + 1)B + λI

]
∆u∗(k + i) = −BT P̂ (k + i + 1)Ax(k + i)

. . . (i = 0, 1, 2, · · · , N − 1) (D.32)

Now, using

x(k + i) = Aix(k) +
i−1∑

j=0

Ai−j−1B∆u(k + j) (D.33)

39



= Aix(k) +
[

Ai−1B Ai−2B · · · B
]




∆u(k)
∆u(k + 1)

...
∆u(k + i − 1)




(D.34)

we can write Eq. (D.32) as

BT P̂ (k + i + 1)
[

AiB Ai−1B · · · Ai−1B B
]




∆u∗(k)
∆u∗(k + 1)

...
∆u∗(k + i)




+λI∆u∗(k + i) = −BT P̂ (k + i + 1)Ai+1x(k) (i = 0, 1, 2, · · · , N − 1)

Substituting for index i, we get




BT P̂ (k + 1)B

BT P̂ (k + 2)AB BT P̂ (k + 2)B
...

...
. . .

BT P̂ (k + N)AN−1B BT P̂ (k + N)AN−2B · · · BT P̂ (k + N)B







∆u∗(k)
∆u∗(k + 1)

...
∆u∗(k + N − 1)




︸ ︷︷ ︸
∆u∗

+λI∆u∗ = −




BT P̂ (k + 1)A

BT P̂ (k + 2)A2

...

BT P̂ (k + N)AN




x(k) (D.35)

Note that Eqs. (D.30) and (D.35) have similar structure. Now, if we transform the RHS
of Eq. (D.35) to match that of Eq. (D.30) and, as a result, if we get the LHS of both
equations to match we have proved the lemma.

So, first transform the RHS of Eq. (D.35) to match that of Eq. (D.30). Consider the
ith row in the RHS of Eq. (D.35). By Eq. (C.25), we have

P̂ (k + i) = AT P̂ (k + i + 1)A + CTC − AT P̂ (k + i + 1)BK(k + i)

= AT [AT P̂ (k + i + 2)A + CTC − AT P̂ (k + i + 2)BK(k + i + 1)]A + CTC

−AT P̂ (k + i + 1)BK(k + i)

...

= (AN−i)T P̂ (k + N)AN−i + (AN−i−1)TCTCAN−i−1 + (AN−i−2)TCTCAN−i−2 +

· · · + CTC − (AN−i)T P̂ (k + N)BK(k + N − 1)AN−i−1

−(AN−i−1)T P̂ (k + N − 1)BK(k + N − 2)AN−i−2 − · · ·

−AT P̂ (k + i + 1)BK(k + i) (D.36)

That is, the ith row of RHS in Eq. (D.35) becomes

−BT P̂ (k + i)Ai = −Φ + Ω

where

Φ = [BT (AN−i)T P̂ (k + N)AN + BT (AN−i−1)TCTCAN−1 + · · · + BTCTCAi]x(k)(D.37)
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and Ω = [BT (AN−i)T P̂ (k + N)BK(k + N − 1)AN−1 (D.38)

BT (AN−i−1)T P̂ (k + N − 1)BK(k + N − 2)AN−2 − · · · (D.39)

BTAT P̂ (k + i + 1)BK(k + i)Ai]x(k) (D.40)

Note that, Φ is same as the RHS of Eq. (D.31). Next, we will move Ω to the LHS, and
then simplify the equation. Now, by (D.33), we have

Aix(k) = x(k + i) −
i−1∑

j=0

Ai−j−1B∆u(k + j) (D.41)

(D.42)

Substituting Eq. (D.41) in Ω and using optimal control law, ∆u∗(k+j) = −K(k+j)x(k+j),
we get

Ω =

−BT (AN−i)T P̂ (k + N)B∆u∗(k + N − 1)

−BT (AN−i)T P̂ (k + N)BK(k + N − 1)
(
AN−2B∆u(k) + · · · + B∆u(k + N − 2)

)

−BT (AN−i−1)T P̂ (k + N − 1)B∆u∗(k + N − 2)

−BT (AN−i−1)T P̂ (k + N − 1)BK(k + N − 2)
(
AN−3B∆u(k) + · · · + B∆u(k + N − 3)

)

− · · · · · ·

−BTAT P̂ (k + i + 1)B∆u∗(k + i)

−BTAT P̂ (k + i + 1)BK(k + i)
(
Ai−1B∆u(k) + · · · + B∆u(k + i − 1)

)

The the ith row of LHS of Eq. (C.26) is

BT P̂ (k + i)Ai−1B∆u∗(k) + BT P̂ (k + i)Ai−2B∆u∗(k + 1) · · ·

+ BT P̂ (k + i)B∆u∗(k + i − 1) (D.43)

Substituting Eq. (D.43) in Eq. (D.36) and moving Ω to the LHS, we get the coefficients
of ∆u∗(k) on LHS as

BT [(AN−i)T P̂ (k + N)AN−i + (AN−i−1)TCTCAN−i−1 + · · · + CTC]Ai−1B

where, P̂ (k + N) = CTC + Q. This coefficient is same as the one in Eq. (D.31). Similarly,
we can relate the coefficients of ∆u∗(k + j) (j = 1, 2, · · · , i − 1) to the ones in Eq. (D.31).
Next, look at the coefficients of ∆u∗(k + j), (j = i, i + 1, · · · , N − 1). For j = N − 1, the
coefficient of ∆u∗(k + j)) on LHS becomes BT (AN−i)T P̂ (k +N)B, which is same as in Eq.
(D.31). For j = i, the coefficient of ∆u∗(k + j)) on LHS is given by

BTAT P̂ (k + i + 1)B + BT (A2)T P̂ (k + i + 2)BK(k + i + 1)B

+ · · · + BT (AN−i−1)T P̂ (k + N − 1)BK(k + N − 2)AN−i−3B

+BT (AN−i)T P̂ (k + N)BK(k + N − 1)AN−i−2B

From Eq. (D.36), we have

P̂ (k + i + 1)

= (AN−i−1)T P̂ (k + N)AN−i−1 + (AN−i−2)TCTCAN−i−2 + · · · + CTC

−(AN−i−1)T P̂ (k + N)BK(k + N − 1)AN−i−2

−(AN−i−2)T P̂ (k + N − 1)BK(k + N − 2)AN−i−3 − · · ·

−AT P̂ (k + i + 2)BK(k + i + 1)
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Substituting P̂ (k + i + 1), we get the coefficient of ∆u∗(k + i) as follows

BT (AN−i)T P̂ (k + N)AN−i−1B + BT (AN−i−1)TCTCAN−i−2B

+ · · · + BTATCTCB

which is same as the one in Eq. (D.31).
Thus, we have shown that the optimal control law given by Eq. (26) is same as the one

given by Eq. (C.26)

Numerical Example:

Consider an LTI system,

x(k + 1) = Ax(k) + B∆u(k)

y(k) = Cx(k)

where

A =

[
1 2
3 1

]
, B =

[
0
1

]
, C =

[
1 2

]

and the cost function of Eq. (22). Let the GPC control parameters be λ = 1, N1 = 1,
N2 = Nu = 3, and

Q = [1] .

Now the GPC control law computed by Eq. (26) yields

Kgpc = (GTG + λI + C
T
QC)−1(CQA3 + GT L)

=




3.6368 2.4684
1.8240 3.1017
0.1072 −0.3723




Similarly, the LQ control law computation for the same cost function using Eq. (D.35)
yields

Klqr =




BT P̂ (1)B + λ

BT P̂ (2)AB BT P̂ (2)B + λ

BT P̂ (3)A2B BT P̂ (3)AB BT P̂ (3)B + λ




−1


BT P̂ (1)A

BT P̂ (2)A2

BT P̂ (3)A3




=




3.6368 2.4684
1.8240 3.1017
0.1072 −0.3723




which is same as Kgpc. This shows that both control laws are the same at time instant
t = k. When the cost horizons for GPC and LQ strategies are identical.
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